Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 930: 172738, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38670362

RESUMO

Pesticide usage is a common practice to increase crop yields. Nevertheless, the existence of pesticide residues in the surrounding environment presents a significant hazard to pollinators, specifically the potential undisclosed dangers related to emerging nanopesticides. This study examines the impact of abamectin nanocapsules (AbaNCs), created through electrostatic self-assembly, as an insecticide on honey bees. It was determined that AbaNCs upregulated detoxification genes, including CYP450, as well as antioxidant and immune genes in honey bees. Furthermore, AbaNCs affected the activity of crucial enzymes such as superoxide dismutase (SOD). Although no apparent damage was observed in bee gut tissue, AbaNCs significantly decreased digestive enzyme activity. Microbiome sequencing revealed that AbaNCs disrupted gut microbiome, resulting in a reduction of beneficial bacteria such as Bifidobacterium and Lactobacillus. Additionally, these changes in the gut microbiome were associated with decreased activity of digestive enzymes, including lipase. This study enhances our understanding of the impact of nanopesticides on pollinating insects. Through the revelation of the consequences arising from the utilization of abamectin nanocapsules, we have identified potential stress factors faced by these pollinators, enabling the implementation of improved protective measures.


Assuntos
Microbioma Gastrointestinal , Inseticidas , Ivermectina , Nanocápsulas , Animais , Ivermectina/análogos & derivados , Ivermectina/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Abelhas/fisiologia , Abelhas/efeitos dos fármacos , Inseticidas/toxicidade
2.
ACS Nano ; 17(20): 20654-20665, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37800476

RESUMO

The highly water-soluble nematicide fosthiazate is anticipated to undergo microencapsulation in order to enhance its retention around plant roots and mitigate leaching into groundwater. However, the underlying mechanism governing the influence of hydrophilicity of the microcapsule (MC) core on the evolution of the microcapsule shell remains unclear, posing challenges for encapsulating water-soluble core materials. This study elucidates the microlevel formation mechanism of microcapsules by investigating the impact of interfacial mass transfer on shell formation and proposes a method for regulating the structure of shells. The study reveals that enhancing the hydrophilicity of the core enhances the shuttle effect between the oil and aqueous phase, expands the region of polymerization reactions, and forms a loose and thick shell. The thickness of the microcapsule shell prepared using solvent oil 150# (MCs-SOL) measures only 264 nm, while that of the microcapsules prepared using propylene glycol diacetate and solvent oil 150# at a ratio of 2:1 (MCs-P2S1) is 5.2 times greater. The enhanced compactness of the shell reduced the release rate of microcapsules and the leaching distance of fosthiazate in soil, thereby mitigating the risk of leaching loss and facilitating the distribution of active ingredients within crop roots. The MCs-SOL had a limited leaching distance measurement of 8 cm and exhibited a satisfactory efficacy of 87.3% in controlling root galling nematodes. The thickness and compactness of the MCs shell can be regulated by manipulating the interfacial shuttle effect, providing a promising approach to enhancing utilization efficiency while mitigating potential environmental risks.

3.
ACS Appl Mater Interfaces ; 15(17): 21444-21456, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37077037

RESUMO

The foliar loss of pesticides causes serious utilization decline and environmental risk. On the basis of biomimetics, pesticide-loaded microcapsules (MCs) with spontaneous deformation on foliar micro/nanostructures, like the snail suction cup, are prepared by interfacial polymerization. By controlling the usage or types of small alcohols in the MC preparation system, the flexibility of MCs is tunable. Through the investigation of emulsions and MC structures, we discover that the migration and distribution of small alcohols driven by amphiphilicity affect the process of interfacial polymerization between polyethylene glycol and 4,4-methylenediphenyl diisocyanate. By hydrophobic modification of the polymer and competition for oil monomers of small alcohols, the thickness and compactness of shells are reduced, whereas the density of the core is increased. As a result of the regulation in structures, the flexibility of MCs is improved significantly. In particularly, the MCs-N-pentanol (0.1 mol kg-1) with the best flexibility show strong scouring resistance on varied foliar structures, sustained release property on the air/solid interface, and persistent control effect against foliar diseases. The pesticide-loaded soft MCs provide an effective way to improve pesticide foliar utilization.


Assuntos
Praguicidas , Praguicidas/química , Cápsulas/química , Álcoois , Polímeros/química
4.
Pest Manag Sci ; 79(9): 3190-3199, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37030009

RESUMO

BACKGROUND: As a registered non-fumigant nematicide, abamectin has been widely used as a soil treatment against many cash crop nematode diseases. In a previous study, we found that soil adsorption hindered the stable performance of abamectin against root-knot nematodes in the field. RESULTS: In this study, an efficient and labor-saving application method of soil blending abamectin combined with rotary tillage, a common agronomic measure, was developed to improve the efficacy of abamectin against root-knot nematode disease. We revealed the role of four parameters in this application method. At an abamectin dose of 750 g a.i. ha-1 , spray water volume of 675 L ha-1 and rotation depth of 20 cm, abamectin was well distributed in the 0-20 cm soil layer at a concentration of 0.41-0.46 mg kg-1 , the efficacy against root-knot nematode disease was 72.12%, and the cucumber yield was 51.93 t ha-1 . At the same dosage, root irrigation and flood irrigation measures resulted in only 29.28% and 33.43% control, with cucumber yields of 42.96 and 44.73 t ha-1 , respectively. CONCLUSION: To control root-knot nematode disease with abamectin, a soil blending application combined with rotary tilling is superior to leaching application combined with the agronomic measure of irrigation. The former application method can improve the dispersion of abamectin in the soil, enhance the efficacy of abamectin against root-knot nematodes and maintain a stable cucumber yield. In addition, the increased labor required for application combined with agronomic measures is negligible and has excellent application prospects. © 2023 Society of Chemical Industry.


Assuntos
Cucumis sativus , Tylenchoidea , Animais , Agricultura , Solo
5.
Pest Manag Sci ; 79(9): 3103-3113, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36992568

RESUMO

BACKGROUND: The complex preparation process and storage instability of nanoformulations hinders their development and commercialization. In this study, nanocapsules loaded with abamectin were prepared by interfacial polymerization at room temperature and ordinary pressure using the monomers of epoxy resin (ER) and diamine. The potential mechanisms of primary amine and tertiary amine in influencing the shell strength of the nanocapsules and the dynamic stability of abamectin nanocapsules (Aba@ER) in the suspension system were systematically researched. RESULTS: The tertiary amine catalyzed the self-polymerization of epoxy resin into linear macromolecules with unstable structures. The structural stability of the diamine curing agent with a primary amine group played a key role in enhancing the structural stability of the polymers. The intramolecular structure of the nanocapsule shell formed by isophorondiamine (IPDA) crosslinked epoxy resin has multiple spatial conformations and a rigid saturated six-membered ring. Its structure was stable, and the shell strength was strong. The formulation had stable dynamic changes during storage and maintained excellent biological activity. Compared with emulsifiable concentrate (EC), Aba@ER/IPDA had superior biological activity, and the field efficacy on tomato root-knot nematode was enhanced by approximately 31.28% at 150 days after transplanting. CONCLUSION: Aba@ER/IPDA, which has excellent storage stability and simple preparation technology, can provide a nanoplatform with industrial prospects for efficient pesticide delivery. © 2023 Society of Chemical Industry.


Assuntos
Nanocápsulas , Nematoides , Animais , Resinas Epóxi/química , Diaminas , Raízes de Plantas
6.
ACS Appl Mater Interfaces ; 14(36): 41337-41347, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36053529

RESUMO

A strategy that relies on the differences in feeding behavior between pests and natural enemies to deliver insecticides precisely was proposed. After proving that the digestive enzymes in Lepidopteran pests can act as triggers for lignin-based controlled-release carriers, a novel multiple-enzyme-responsive lignin/polysaccharide/Fe nanocarrier was constructed by combining the electrostatic self-assembly and chelation and loaded with lambda-cyhalothrin (LC) to form a nanocapsule suspension loading system. The nanocapsules were LC@sodium lignosulfonate/chitosan/Fe (LC@SL/CS/Fe) and LC@sodium lignosulfonate/alkyl polyglycoside quaternary ammonium salt/Fe (LC@SL/APQAS/Fe). LC@SL/APQAS/Fe was more stable than LC@SL/CS/Fe because it adsorbs more Fe3+, and the half-lives of LC in LC@SL/APQAS/Fe under UV irradiation were prolonged at 4.02- and 6.03-folds than those of LC@SL/CS/Fe and LC emulsifiable concentrate (LC EC), respectively. Both LC@SL/APQAS/Fe and LC@SL/CS/Fe have responsive release functions to laccase and cellulase, and the release rate of the former was slower. The insecticidal activity of LC@SL/APQAS/Fe against Agrotis ipsilonis was similar to those of LC@SL/CS/Fe and LC EC, while the toxicity of LC@SL/APQAS/Fe to the natural enemy was 2-3 times less than those of LC@SL/CS/Fe and LC EC. Meanwhile, the organic solvent component in the nanocapsule suspension was 94% less than that in the EC preparation. Therefore, the nano loading system based on SL/APQAS/Fe is a promising nanoplatform with the advantages of high efficiency, low toxicity, and environmental friendliness.


Assuntos
Quitosana , Inseticidas , Nanocápsulas , Praguicidas , Lignina , Nitrilas , Piretrinas , Sódio
7.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112166, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34739877

RESUMO

To reduce the negative impact of nanopesticide carriers of on the environment, a greener nanodelivery system is necessary. Nanogels are nontoxic and degradable carriers, however, the potential of nanogels for delivering pesticides has not been proven. In this study, poly(vinyl alcohol)-valine, an ecofriendly polymer, was synthesized and used to fabricate emamectin benzoate nanogel suspension (EB NS). The nanoformulation showed favorable stability at low temperature, high temperature or one year storage, and in water with different hardnesses. The retention of the EB NS solution on leaves was higher than that of an EB emulsifiable concentrate (EC) by approximately 9% at a concentration of 10 mg L-1. The half-life of EB nanogels under Ultra Violet irradiation was prolonged by 3.3-fold. Moreover, the bioactivity of the EB NS against Plutella xylostella was higher than that of the EB EC. These advantages resulted in a relatively long duration of pest control. The response of nanogels to laccase, a digestive enzyme in the digestive tract of lepidopteran pests, enables pesticide release on demand. Nanogels have the advantages of being ecofriendly carriers, exhibiting higher utilization, and prolonged pest control periods, and they have a brilliant future in pesticide delivery.


Assuntos
Inseticidas , Álcool de Polivinil , Ivermectina/análogos & derivados , Lignina/análogos & derivados , Nanogéis , Polietilenoglicóis , Polietilenoimina , Valina
8.
Nanoscale ; 13(37): 15647-15658, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34532728

RESUMO

Nanocapsules are a promising controlled release formulation for foliar pest control. However, the complicated process and high cost limit widespread use in agriculture, so a simpler and more convenient preparation system is urgently needed. Meanwhile, under complex field conditions, the advantageous mechanism of the nanosize effect and sustained release have no quantitative and detailed study. In this study, a reactive emulsifier (OP-10) is used to participate in the interfacial polymerization of the nanoemulsion, and polymer nanocapsules loaded with lambda-cyhalothrin (NCS@LC) are quickly and easily prepared to study the efficacy and synergistic mechanism of foliar pest control. As a result, the nanocapsule is about 150 nm with a stable core-shell structure. The nanoscale state increases the distribution and adhesion of the particles on the leaf surface, which increases the contact efficiency of pesticides under the different physiological stages and behavioral activities of the target organism. The shell structure provides sustained release characteristics and increases the UV resistance by about 2.5 times for pesticides. Compared with microcapsules loaded with lambda-cyhalothrin (CS@LC), NCS@LC not only shows rapid and synergistic insecticidal efficacy but also provides sustained insecticidal efficacy. The mortality of NCS is 3.4 times that of the nanosized emulsion in water (NEW) at the lowest concentration (0.5 mg L-1), and the control efficacy remained 77.3% after 7 days. Compared with NEW, NCS@LC provides excellent field efficacy, while LC50 for zebrafish is only 0.68 times without increasing the aquatic toxicity risk.


Assuntos
Inseticidas , Nanocápsulas , Piretrinas , Animais , Nanocápsulas/toxicidade , Nitrilas , Peixe-Zebra
9.
ACS Nano ; 15(9): 14598-14609, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34427447

RESUMO

At present, it is highly important to develop a simple and compatible nano delivery system for pesticides for foliar application, which can improve their insecticidal efficacy and resistance to adverse climates while reducing the environmental risks. Polyethylene glycol and 4,4-methylenediphenyl diisocyanate are used as hydrophilic soft and hydrophobic hard segments, respectively, for polymer self-assembly and polyurethane gelation in a nanoreactor. The nanocarrier synthesis and the pesticide loading are realized by a one-step integration procedure and suited well for hydrophobic active compounds. Modifying the molecular structure of the soft segment can adjust the flexibility of the nanocarriers and result in viscosity and deformation characteristics. After foliar spray application, the foliar flattening state of the nanogels increases the foliar protection area by 2.21 times and improves both pesticide exposure area and target contact efficiency. Concurrently, the flexibility and viscosity of the nanogels increase the washing resistance and the retention rate of the pesticide by approximately 80 times under continuous washing. The encapsulation of the nanogels reduces the foliar ultraviolet (UV) degradation and aquatic pesticide exposure, which increase the security of λ-cyhalothrine by 9.33 times. Moreover, the degradability of nanogels is beneficial for pesticide exposure and reducing pollution. This system has simple preparation, good properties, and environmental friendliness, making the nanocarriers promising for delivering pesticides.


Assuntos
Praguicidas , Adesividade , Nanogéis
10.
Pest Manag Sci ; 77(10): 4418-4424, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33991053

RESUMO

BACKGROUND: Increasing pesticide retention on crop leaves is a key approach for guaranteeing efficacy when products are applied to foliage. Evidently, the formulation plays an important role in this process. Microcapsules (MCs) are a promising formulation, but whether and how their adhesion to the leaf surface affects retention and efficacy is not well understood. RESULTS: In this study, we found that the incorporation of polyethylene glycol (PEG) with different molecular weights into the MC shell affects the release profile of MCs and the contact area of these MCs to leaves by changing their softness. The cumulative release rates of pyraclostrobin (Pyr) MCs fabricated with PEG200, PEG400, PEG800 and PEG1500 were 80.61%, 90.98%, 94.07% and 97.40%, respectively. Scanning electron microscopy observations showed that the flexibility of the MCs increased with increasing PEG molecular weight. The median lethal concentration (LC50 ) of the MCs with different PEG to the zebrafish were 12.10, 8.10, 3.90 and 1.46 mg L-1 , respectively, which also indirectly reflected their release rate. Rainwater had less influence on the retention of the MCs prepared with PEG1500 than with the other PEG, which indicates a better adhesion to the target leave surfaces. MCs with the highest residual efficacy had better control efficacy on peanut leaf spot in field trials. CONCLUSION: Overall, adding PEG with an appropriate molecular weight to the MC shell can regulate the structure of the MC shell to improve the affinity between the MCs and leaves, which further improves the utilization of pesticides and reduces the environmental risks of pesticides. © 2021 Society of Chemical Industry.


Assuntos
Fungicidas Industriais , Praguicidas , Animais , Cápsulas , Fungicidas Industriais/farmacologia , Polímeros , Peixe-Zebra
11.
Plant Dis ; 105(9): 2466-2471, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33529065

RESUMO

Cereal cyst nematode (Heterodera avenae), an important plant-parasitic nematode causing yield losses of wheat, has been found in many provinces in China. It is urgent to develop an effective method of protecting wheat from H. avenae damage. Because of its novel mode of action, fluopyram has been registered for controlling root-knot nematodes on cucumber and tomato in China. However, the bioactivity of fluopyram against H. avenae and whether this seed treatment can effectively control H. avenae on wheat remains unknown. In this study, a bioactivity assay revealed that fluopyram increased the mortality of H. avenae second-stage juveniles (J2), with lethal concentrations (LC) required to kill 50% (LC50) and 90% (LC90) of 0.92 mg⋅liter-1 and 2.92 mg⋅liter-1, respectively. Hatching tests showed that the H. avenae egg hatching percent was reduced by 35.2 to 69.2% with fluopyram at rates of 1.6 to 6.4 mg⋅liter-1, and that the egg hatching period was delayed by 3 to 9 days compared with the control. During pot and field trials, fluopyram seed treatment significantly reduced the H. avenae population density and increased wheat yield by 3.0 to 13.7%. Therefore, fluopyram seed treatment is an effective approach for the management of H. avenae on wheat in China.


Assuntos
Cistos , Tylenchoidea , Animais , Benzamidas , Grão Comestível , Piridinas , Sementes , Triticum
12.
J Agric Food Chem ; 69(7): 2099-2107, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33555871

RESUMO

The fungicide pyraclostrobin is highly toxic to aquatic organisms. Microencapsulation is an effective way to reduce the exposure of pyraclostrobin to aquatic organisms but it also reduces the contact probability between the fungicide and plant pathogens. Hence, winning a balance between the toxicity and bioactivity of pyraclostrobin is very necessary. In this study, triethylenetetramine (TETA), ethylenediamine (EDA), hexamethylenediamine (HAD), and isophoronediamine (IPDA) were selected as cross-linkers to prepare the pyraclostrobin-loaded polyurea microcapsules (PU-MCs) by interfacial polymerization. TETA formed the shells with the highest degree of cross-linking, the slowest release profile, and the best protection against ultraviolet (UV). In terms of MCs fabricated by diamines, higher leaking, weaker UV resistance of the shells was observed with increasing carbon skeleton. TETA-MCs showed the highest safety to zebrafish (LC50 of 10.086 mg/L), whereas EDA-MCs, HAD-MCs, and IPDA-MCs were 5.342, 3.967, and 0.767 mg/L, respectively. TETA-MCs had the best long-term disease management, while the control efficacies of other MCs were higher at the early stage of disease development. Overall, a balance between the aquatic toxicities and fungicidal activities of pyraclostrobin-loaded PU-MCs could be reached through a simple selection of polyamines in the fabrication.


Assuntos
Poliaminas , Peixe-Zebra , Animais , Cápsulas , Polímeros , Estrobilurinas
13.
J Agric Food Chem ; 68(47): 13562-13572, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33175505

RESUMO

It is highly desirable to fabricate a pesticide delivery system with excellent permeability to reduce the damage caused by root-knot nematodes in the soil. In this work, a novel electronegative pesticide nanocarrier was established by bonding anionic lignosulfonate with epoxy resin nanocarriers, which were loaded with abamectin (Aba). The results demonstrated that nanoparticles were negatively charged (-38.4 mV) spheres with an average size of 150 nm, and the encapsulation efficiency of nanocarriers for Aba was 93.4%. Polymer nanocarriers could prevent premature release of Aba and protect active ingredients from microbiological degradation. The adsorption strength of the soil to Aba loaded in nanocarriers was reduced by 6 to 10 times, so nanonematicides have remarkable soil mobility. Meanwhile, nanoparticles could easily penetrate the roots and nematodes. The application test confirmed that the control effect of this nanopesticide was 26-40% higher than that of the other agrochemicals. In consideration of its superior bioactivity and utilization rate, this pesticide delivery system has promising potential to control root-knot nematodes and improve the pesticide's utilization efficiency.


Assuntos
Praguicidas , Solanum lycopersicum , Tylenchoidea , Animais , Resinas Epóxi , Lignina , Raízes de Plantas
14.
RSC Adv ; 9(17): 9820-9827, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35520710

RESUMO

Diverse shell structures can endow microcapsules (MCs) with a variety of properties. In this study, four kinds of MCs encapsulated with epoxy phenolic novolac resin (EPN) were obtained using diamines as crosslinkers. The FTIR and CLSM confirmed that the EPN-shell was successfully synthesized. SEM results suggested that all four of the MCs possessed smooth and imporous surfaces, and they displayed uniform size distribution, with the average size ranging from 11.2 to 14.8 µm. Specifically, the MCs synthesized with the crosslinkers of hexamethylene diamine (HAD) and isophorone diamine (IPDA) were more stable and could maintain their spherical shapes in a dry environment, while those synthesized with ethylene diamine (EDA) and triethylene tetramine (TETA) exhibited poorer thermal stabilities and faster release profiles. Lipophilic diamines can form thicker shell thickness, and have smaller d-space values and higher Young's modulus values. Therefore, the lipophilicity of the diamine agents is the key factor that influences the specific properties of the MCs. The hybrid approach was validated as a flexible strategy to meet diverse requirements. The present study can provide a comprehensive understanding of diamine crosslinkers in the synthesis of EPN-MCs, and such MCs can be extended to a wide range of fields because of their broad tunable performance.

15.
Front Chem ; 6: 387, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30246007

RESUMO

A model solvent, 1,3,5-trimethylbenzene, was encapsulated using coordination assembly between metal ions and tannic acid to reveal the deposition of coordination complexes on the liquid-liquid interface. The deposition was confirmed by zeta potential, energy dispersive spectroscopy and X-ray photoelectron spectroscopy. Scanning electron microscopy and transmission electron microscopy were integrated to characterize the microcapsules (MCs). According to atomic force microscopy height analysis, membrane thickness of the MCs increased linearly with sequential deposition. For MCs prepared using the Fe3+-TA system, the average membrane thicknesses of MCs prepared with 2, 4, 6, and 8 deposition cycles were determined as 31.3 ± 4.6, 92.4 ± 15.0, 175.4 ± 22.1, and 254.8 ± 24.0 nm, respectively. Dissolution test showed that the release profiles of all the four tested MCs followed Higuchi kinetics. Membrane thicknesses of MCs prepared using the Ca2+-TA system were much smaller. We can easily tune the membrane thickness of the MCs by adjusting metal ions or deposition cycles according to the application requirements. The convenient tunability of the membrane thickness can enable an extensive use of this coordination assembly strategy in a broad range of applications.

16.
Ecotoxicol Environ Saf ; 163: 349-355, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30059879

RESUMO

The conventional emulsifiable concentrate (EC) formulation contains a large amount of aromatic solvents, which causes adverse effects to both the environment and human health due to the toxicity of the solvents. Here, we developed a 2.5% lambda-cyhalothrin EC formulation with ethylene glycol diacetate (EGDA) as the solvent, and the developed formulation serves as an environmental-friendly alternative to overcome the adverse effects of aromatic solvents. The physicochemical characterizations, wettability properties, phytotoxicity and bioassays of the EGDA-EC formulation were systematically investigated and compared with that of the EC formulation with xylene as the solvent. The results showed that both EC formulations had excellent emulsion properties and storage stabilities. Additionally, the EGDA-EC formulation possessed a higher flash point (96 °C), indicating safer production, storage and transport. The retentions of the EGDA-EC sample on leaves were 1.22-1.46-fold higher than that of the xylene-EC sample, and the EGDA-EC also exhibited lower surface tensions and contact angles, which would benefit decreasing drift-off and improving utilization. Furthermore, the bioassays demonstrated that the EGDA-EC formulation had lower acute toxicity to aquatic organisms and higher control efficacy to target insects compared with the xylene-EC formulation. Therefore, EGDA is a promising carrier for oil-soluble agrochemicals to improve their application performance and reduce their adverse effects.


Assuntos
Agroquímicos/administração & dosagem , Etilenoglicol/toxicidade , Nitrilas/administração & dosagem , Piretrinas/administração & dosagem , Agroquímicos/química , Agroquímicos/toxicidade , Animais , Brassica , Clorófitas , Cucumis sativus , Daphnia , Emulsões , Etilenoglicol/química , Humanos , Nitrilas/química , Nitrilas/toxicidade , Piretrinas/química , Piretrinas/toxicidade , Solventes , Tensoativos , Testes de Toxicidade , Peixe-Zebra
17.
Colloids Surf B Biointerfaces ; 169: 404-410, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29804033

RESUMO

In this work, a series of polyurea-based lambda-cyhalothrin-loaded microcapsules (MCs) with three different size distributions (average diameters of 1.35 µm, MC-S; 5.13 µm, MC-M; and 21.48 µm, MC-L) were prepared and characterized. The results indicated that MCs with a smaller particle size distribution had a faster release rate and excellent initial efficacy against pests. MC-L had a remarkably slow incipient release rate, outstanding photostability and better later-stage efficacy than that of the other tested MCs. The results clarified that the diameter distribution of MCs is the key factor in determining the release property and bioactivity of the MC formulations. Subsequently, the binary mixture MC formulations of MC(+M), MC(S+L) and MC(M+L) were obtained by mixing MC-S, MC-M or MC-L at 1:1 to establish a two-stage release system utilized for foliar application situations. Greenhouse and field experiments showed that MC(S+L) provided an optimal efficacy, and its effective duration was much longer than that of the emulsifiable concentrate (EC) group. Therefore, the release system established in this study was simple and workable for regulating the initial and long-term efficacy by adjusting the particle size distribution; in addition, this system has potential applications in other fields such as drug delivery devices.


Assuntos
Nitrilas/química , Polímeros/química , Piretrinas/química , Cápsulas/síntese química , Cápsulas/química , Tamanho da Partícula , Propriedades de Superfície
18.
J Colloid Interface Sci ; 517: 86-92, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29421684

RESUMO

In this paper, porous microcapsules with tunable pore sizes were prepared using interfacial polymerization by employing a temperature-responsive cross-linking agent above its so-called cloud point temperature (Tscp). The influences of porosity on the surface morphology, release profile and biological activity of the microcapsules were investigated. The results showed that both pore size and pore density could be controlled by regulating either the amount of cross-linking agent or the ratio of core material to shell material. Furthermore, the porosity of the microcapsules determined their release properties and further regulated the bioactivity of the microcapsules. In addition, the mechanism of pore formation was confirmed by investigating the morphology of microcapsules below the Tscp. The microencapsulation methodology described here is convenient and versatile, which can be easily extended to encapsulate a broad range of lipophilic core materials.


Assuntos
Cápsulas/química , Resinas Epóxi/química , Compostos de Anilina/química , Reagentes de Ligações Cruzadas/química , Composição de Medicamentos/métodos , Herbicidas/química , Tamanho da Partícula , Porosidade , Sorghum , Propriedades de Superfície , Temperatura
19.
Colloids Surf B Biointerfaces ; 165: 165-171, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29477937

RESUMO

Microcapsules (MCs) prepared with diverse wall material structures may exhibit different properties. In this study, MCs were fabricated with three kinds of epoxy phenolic novolac resins (EPNs), which possessed unique epoxy values as wall-forming materials by interfacial polymerization. The effects of the EPN types on the surface morphology, particle size distribution, encapsulation efficiency, thermal stability as well as release behavior and bioactivity of the MCs were investigated. In all three samples, the MCs had nearly spherical shapes with fine monodispersities and sizes in the range of 7-30 µm. Scanning electron microscopy (SEM) images showed that some small pores (ranging from 50 nm to 400 nm) appeared on the microcapsule surfaces and that the porosity decreased with an increasing of epoxy value. The X-ray diffractometer (XRD) analysis indicated that the cured EPN shells had larger degrees of crosslinking with higher epoxy values, leading to better thermal stabilities. Moreover, the release rate of the core material (pendimethalin) decreased with an increasing of epoxy value and thus resulted in a lower herbicidal control efficacy. The results of our research will enhance the potential application of EPNs as smart wall-forming materials to prepare porous MCs for controlled release.


Assuntos
Materiais Biocompatíveis/farmacologia , Resinas Epóxi/farmacologia , Formaldeído/farmacologia , Microesferas , Fenóis/farmacologia , Polímeros/farmacologia , Materiais Biocompatíveis/química , Preparações de Ação Retardada , Resinas Epóxi/química , Formaldeído/química , Herbicidas/toxicidade , Tamanho da Partícula , Fenóis/química , Plantas Daninhas/efeitos dos fármacos , Polímeros/química , Porosidade , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termogravimetria , Difração de Raios X
20.
ACS Omega ; 3(1): 706-716, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457926

RESUMO

To reduce the amount of organic solvents in pendimethalin emulsifiable concentrate (EC), small-size microcapsules (S-MCs) and large-size microcapsules (L-MCs) were prepared with polyurea as a wall material. Petri-dish bioassays were carried out to investigate the bioactivity of formulations and the influence of both organic matter and moisture. The relationships between degradation and the biological activity of three pendimethalin formulations in the soil were investigated, and field experiments were executed to verify the laboratory results. The laboratory tests showed the following: (1) the bioactivity of EC and S-MCs was similar and greater than that of L-MCs; (2) organic matter could reduce the bioactivity of MCs and EC, and the impact of organic matter on L-MCs was greater; (3) increased soil moisture content had no significant effect on the bioactivity of EC but slightly reduced that of the MCs; and (4) the L-MCs showed significantly more prolonged residual and effective persistence in the soil than did EC and S-MCs. However, the field experiments indicated that the herbicidal efficacies of L-MCs at the early and late stages were both lower than those of EC. Comprehensive analysis of the results indicated that the main reason that the herbicidal efficacy of L-MCs was lower than that of EC in the field was that L-MCs missed the optimal herbicidal periods due to the slow-release characteristics of L-MCs. The S-MCs had both similar release rates and herbicidal efficacy in the field as EC. Therefore, to develop a good pesticide formulation, the occurrence and damage characteristic of pests must be considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...